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1 Introduction 

In July, 2007, medical researchers at the University of California at Los Angeles uncovered 
for the first time a direct genetic link between exposure to vehicle exhaust pollutants and 
arteriosclerosis, a primary precursor of cardiovascular diseases (Gong et al., 2007). This 
finding adds to a growing body of scientific evidence suggesting that the characteristics of 
roadway microenvironments coupled with when and for how long people are in these 
microenvironments could be particularly relevant in terms of overall health impacts (Burnett, 
2003). While pollution concentrations in roadway microenvironments have been shown to be 
consistently higher than ambient levels on which air quality standards are assessed, there is 
evidently great variability across space and time due to a range of meteorological, traffic, 
modal, and personal factors (Kaur et al., 2007). The implications are that to deepen our 
understanding of exposure, we must monitor and predict pollution concentrations at 
increasingly disaggregate levels of temporal and spatial resolution (Greaves, 2006). 
 
While methods to measure air pollution have become increasingly refined, prediction 
remains a challenge despite the development of sophisticated vehicular exhaust dispersion 
models. This is largely due to the complexity, non-linearity and unknown distributional 
qualities of air pollution data (Zamurs and Conway, 1991). In response, there is growing 
interest in using data-driven machine-learning techniques, such as Artificial Neural Networks 
(ANN) to model air quality data (Perez, 2000). The appeal of ANNs is that they are capable 
of modelling highly non-linear functions and can be trained to accurately generalise from a 
new independent data set. ANNs are also good at detecting the underlying pattern masked 
by noisy factors in a complex, highly disaggregate, system (Zhang et al., 1998). 
 
Despite the potential, ANN-based approaches have largely been applied to the problem of 
predicting regional or city-wide pollution (Perez et al., 2000, Grivas and Chaloulakou, 2006). 
Relatively few applications have focused on roadside exposures (Moseholm et al., 1996; 
Nagendra and Khare, 2004). The current paper reports on the development and application 
of ANN-based methods to address the problem of temporally disaggregate-level prediction 
of PM2.5

1 near a busy intersection in Sydney, Australia. Following details of the data 
collection required, the paper explains the rationale for the ANN structure used for this 
application. We then apply the ANN and compare to other modelling approaches before 
drawing conclusions on the merits of the approach. 

2 Methodology 

2.1 Study Area and Data 

To develop and test the approach, PM2.5 concentration levels were collected on a minute-by-
minute basis over two weeks (25/05/2007 – 06/06/2007) at the intersection of Military Road 

                                                 
1 PM2.5 refers to particulate matter with an aerodynamic diameter of less than 2.5 microns. It is 
associated with an increased risk of cardiopulmonary and lung cancer mortality, reduced lung 
function, and as a potential trigger for existing respiratory problems such as asthma (Kappos et al., 
2004). 
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and Wycombe Road in Sydney, Australia (FIGURE 1). Military Road is a major traffic route 
in Northern Sydney that carries approximately 77,000 vehicles per day. The equipment 
comprised the AM510 SidePak™ personal aerosol monitor (also shown in FIGURE 1), which 
uses nephelometric (light-scattering) techniques to estimate PM2.5 concentrations (see 
Greaves, 2006 for more details). The monitor was placed in an apartment overlooking the 
intersection. Ambient PM2.5 concentration levels were collected at the same time using the 
same model device at a location approximately 300 metres south where effects from primary 
particulates originating from traffic were believed to be minimal (Zhu, 2002). One minute 
temperature, wind speed and direction, relative humidity, and mean-sea level pressure were 
obtained from the closest fixed site stations of the Bureau of Meteorology – note precipitation 
levels were zero during the data collection period. Fifteen-minute traffic volumes contiguous 
with the monitoring period were computed from intersection counts – these are automatically 
collected and stored for the vehicle-actuated signal timing system maintained by the Roads 
and Traffic Authority (RTA) of New South Wales. 

 

 
 
FIGURE 1: The Monitoring Site and Portable Aerosol Monitor 

2.2 Data Analysis and Development of ANNs 

The data were screened resulting in 1,200 valid-data point. The data were then analysed 
with ANNs using the ‘back propagation’ technique with momentum term algorithm. The 
neural network architecture used was the fully-connected feed forward multi-layer perceptron 
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(MLP) with one hidden layer. This setup is considered able to approximate almost every 
measurable function between input and output vectors by selecting a suitable number of 
neurons, connecting weights and transfer functions (Gardner and Dorling, 1998). 
NeuroSolution software was used for the analysis. 
 
While readers are referred to texts such as Haykin (1999) for more details on ANNs, there 
were important considerations for the application detailed here. First was the choice of a 
suitable transfer function. Previous studies have shown the logistic sigmoid transfer function 
(Perez et al., 2000) and the hyperbolic sigmoid transfer function (Nagendra and Khare, 
2004) are among the most efficient functions in mapping the input and output patterns for 
atmospheric pollution. This study assessed both transfer functions for the most accurate 
results. The formula for the proposed transfer functions and the back propagation algorithm 
are presented below: 
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where u is the sum of the adjusted input signals, wij is the connecting weight between 
neuron i and neuron j, xi is the output from neuron (i), η is the learning rate, μ is the 
momentum factor to ensure network stability and t is a set of input data. 
 
A second consideration was the selection of the optimal number of neurons in the hidden 
layer. Networks with fewer hidden neurons are preferable since it is easier to generalise but 
networks with too few hidden neurons have limited power in mapping and predicting data. 
The number of neurons in the network is directly proportion to the number of weight needed 
to be estimated. Here we followed an empirical rule suggested by Haykin (1999) to restrict 
the number of weight needed to be estimated to not more than ten percent of the total 
number of data point used to train the network. The final procedural issue related to how to 
split the sample for training, cross-validation2 and testing. In this case, we decided to use 
720 data point (60 percent of the sample) to train the network, 240 data point (20 percent) to 
cross-validate, and 240 data point (20 percent) to test the network. 
 
The performance of the ANN models were evaluated using the root mean square error 
(RMSE), mean absolute error (MAE) and coefficient of determination (R2). The better the 
model performance means the smaller RMSE and MAE and the closer R2 is to 1. The 
formulas for these evaluation criteria are presented below: 
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2 Cross-validation helps prevent overfitting of the data and determines the stopping point of the 
training process. In this study, the training networks were trained 20 times with a maximum epoch of 
3,000 each time. The network will be stopped if the performance of the cross-validating set is not 
improved after 300 repetitive runs. 
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where N is the total number of observations, Oi is the observed value, Pi is the predicted 
value and O is the mean of the observed value. 

3 Results and Discussion 

Initially the minute-by-minute data were used as this captures the most information. 
However, the traffic data were available at 15-minute intervals necessitating use of this 
averaging interval. FIGURE 2 shows a time-series plots of the roadside (i.e., collected at the 
intersection) PM2.5 concentration, ambient PM2.5 concentration and the traffic volume on 
Military Road over the two week sampling period. The plot shows the roadside PM2.5 
concentrations (R_PM2.5) generally track the ambient PM2.5 concentrations (A_PM2.5) at a 
higher level, with more pronounced differences observed during the peak traffic periods. The 
statistics in TABLE 1 confirm this with the average for the roadside PM2.5 (21.09 μg/m3) 
being 45% higher than the ambient average (14.54 μg/m3). 
 
Looking in more detail at the results both the average ambient and roadside PM2.5 
concentrations were below the proposed Australian standard of 25 μg/m3 (Environmental 
Protection and Heritage Council, 2007). However, this hides the fact that for 385 out of 1,200 
data points (around one-third of the monitoring time), levels exceeded this value. Four of the 
days had substantial periods of time above 50 μg/m3 and the maximum observed 
concentration was 72.67 μg/m3. 
 
A natural logarithm transformation was applied to the PM2.5 concentrations and the 
traffic variables to reduce fluctuations in data. Several experiments were performed to 
determine the best combination of network parameters. A fully-connected feed-
forward network, with seven neurons in the input layer, night neurons in the single 
hidden layer and one neuron in the output layer, using the hyperbolic tangent as a 
transfer function yielded the best prediction on the test data set. The total number of 
weight needed to be estimated were 72 which was sufficient achieved by the training 
data set. The architecture of the network with input labels is shown in  

 

FIGURE 3. 
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FIGURE 2: Time-Series Plot of PM2.5 and Traffic Volume over the Sampling Period 
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TABLE 1: Descriptive Statistics for the Two Week Monitoring Period 

 Mean Std. Deviation Min. Max. 

Roadside PM2.5 (μg/m3) 21.09 14.31 0.00 72.67 

Ambient PM2.5 (μg/m3) 14.54 10.99 0.67 55.33 

Traffic (vehicles/15min) 698.89 380.75 28.00 1266.00 

Temperature (Celsius) 14.71 3.52 7.81 23.93 

Relative Humidity (%) 68.73 15.54 24.93 94.37 

MSL Pressure (hPa) 1023.42 2.89 1015.22 1029.30 

Wind Speed (km/hr) 13.06 6.36 0.00 33.60 

 Median Mode Std. Deviation 

Wind Direction (degree) 273 281 90.40 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 3: Structure of 7:9:1 ANN based roadside PM2.5 model 
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TABLE 2 compares the performance of the ANN with the multivariate ARIMA model on the 
training data set and the testing data set. The multivariate ARIMA model considers the 
effects of past values of PM2.5 levels (autocorrelation) in addition to the input variables on 
predicted levels of PM2.5 and has been shown to be particularly useful for drawing insights 
from the type of data with which we are dealing here (Issarayangyun and Greaves, 2007). 
Note that for the comparison presented here, time-lag data (i.e., previous PM2.5, traffic 
volumes etc) were used for the development of the ARIMA model. This may be practical 
during the development of the model but is unlikely to be available in a real-time sense for 
prediction. 
 
During training, the multivariate ARIMA (RMSE = 0.196 μg/m3, MAE = 0.145 μg/m3) 
performed slightly better than the ANN (RMSE = 0.213 μg/m3, MAE = 0.157 μg/m3). Both 
techniques explained approximately 95 percent of the total variation in the training set. After 
training, both techniques were then presented with the test data. The trained ANN (RMSE = 
0.282 μg/m3, MAE = 0.207 μg/m3), however, outperformed the multivariate ARIMA (RMSE = 
0.308 μg/m3, MAE = 0.245 μg/m3). Without significantly losing its ability to predict 15-minute 
PM2.5 concentrations (which reflects the absence of an overfitting problem), the trained ANN 
explained 71 percent of the total variation in the test set while the multivariate ARIMA only 
explained 65 percent of the total variation. 

 
TABLE 2: Model Comparison 

Dependent Variable: Ln(R_PM2.5) (μg/m3) 

Performance Index 
Technique Data Set 

RMSE MAE R2 

Training 0.213 0.157 0.94 Neural Network – 
 MLP (7:9:1) Testing 0.282 0.207 0.71 

Training 0.196 0.145 0.95 
Multivariate ARIMA1 

Testing 0.308 0.245 0.65 

Note: 1. The significant multivariate ARIMA model was ARIMA (1, 1, 13) with 
Ln(A_PM2.5), Ln(traffic), Pressure and wind speed as statistically significant input 
variables. The study employed TSMODEL_EM with automatic outliers detection 
incorporated in SPSS version 14 to do the analysis. 
 
Sensitivity analysis about the mean was performed on the trained network to gain insight into 
the correlation and the relative importance among the input variables to the output variable. 
Each input was varied between its mean (± one standard deviation) while all other inputs 
were fixed at their respective means. The sensitivity plots of each input are shown in 
FIGURE 4. The plots confirm the ambient PM2.5 concentration was the most important factor 
in predicting the roadside PM2.5 concentration. The plots show the roadside PM2.5 
concentration decreased when either wind speed or temperature increased. Relative 
humidity, pressure and wind direction were marginally important in predicting the PM2.5 
concentration. Even though it may be argued these meteorological variables are redundant 
in the network, we prefer to keep them in because from the sensitivity analysis we can never 
be completely sure what impact omitting these variables will have on the network. As 
expected, the roadside PM2.5 concentration has a positive correlation with the traffic volume, 
the higher traffic volume the more PM2.5 concentration measured. However, the absolute 
change in PM2.5 concentration due to the change in traffic volume was low. 
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FIGURE 4: Sensitivity Analysis Plots for Input Variables in the ANN 

4 Conclusions 

This study investigates the potential for applying Artificial Neural Network to the problem of 
predicting roadside PM2.5 concentrations near a busy intersection at a highly disaggregate 
temporal level (15-minute interval). The MLP (7:9:1) network was trained and cross-validated 
using the back propagation algorithm. The network captured the complex correlation 
between the observed variation in ambient PM concentration, traffic and weather conditions. 
The ANN outperformed the traditional statistical techniques by explaining 71 percent of the 
total variation in the pollution data on the testing data set. 
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While these evaluation measures seem impressive, there are several issues that need to be 
raised. First, the strength of performance is largely down to the availability of contiguous 
ambient readings, which as the plot in Figure 2 shows are highly correlated (as logic 
dictates). In a practical application, these data would not be available in a timely manner to 
predict roadside concentrations raising the question of how close we could get with say the 
previous day(s) ambient readings. Second, while the sensitivity analysis showed the 
expected reaction of PM2.5 to changes in levels of input variables such as wind speed and 
traffic, the magnitude of this change was in reality, marginal. This could be down to the use 
of the fifteen minute averaging interval (dictated by available traffic data) or simply that other 
traffic parameters (such as proportion of trucks) are more critical than volume per se. Third, 
while ANNs are designed to (and invariably find) patterns and meaning in the data, often it is 
difficult to interpret or explain results as one might from classical statistical methods. Finally, 
the real potential of ANNs appears to lie in prediction. In the study presented here, given the 
trained ANN was applied to test data collected at the same location under similar conditions 
we would expect prediction to be good. The real test will come when an ANN developed at 
one time and location is applied elsewhere. 
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